NAFLD: a diabetologist's view

Chris Byrne

Professor Endocrinology & Metabolism,

University of Southampton & Southampton NIHR BRC, University Hospital Southampton

June 2019

Diabetes is the most important risk factor for cirrhosis and HCC 18 million patients four European cohorts

- Four databases, the median duration of follow-up was 3.3 years (IQR 1.8–5.3) totalling 531,452 person-years for patients with coded NAFLD/NASH and 43,385,495 person-years for controls (no NAFLD/NASH).
- Coded NAFLD/NASH: more likely to have diabetes/hypertension/obesity
- Apart from a diagnosis of NAFLD/NASH, diabetes was the strongest independent risk factor for acquiring a diagnosis of cirrhosis or HCC.
- HR for cirrhosis in patients compared to controls was 4.73 (95% CI 2.43–9.19) and for HCC, 3.51 (95% CI 1.72–7.16).
- N.B. In the matched control population, the HR for diabetes was even higher than the coded NAFLD/NASH cohort, which may reflect a significant number of individuals with undiagnosed NAFLD/NASH among the controls

Alexander et al. BMC Medicine (2019) 17:95

Association between covariates and risk of liver outcomes: cirrhosis or HCC with NAFLD/NASH or no NAFLD/NASH (controls)

	NAFLD/NASH HR (95% CI)	Matched control HR (95% CI)
Smoking status (current/not current)	1.19 (0.94; 1.51)	1.50 (1.41; 1.60)
Age (years)	1.04 (1.03; 1.05)	1.04 (1.03; 1.04)
History of diabetes (yes/no)	2.30 (1.90, 2.78	2.92 (2.76; 3.08)
History of hypertension (yes/no)	0.92 (0.76; 1.12)	1.07 (1.01; 1.13)
BMI (kg/m ²)	1.01 (1.00; 1.03)	1.04 (1.03; 1.04)

Alexander et al. BMC Medicine (2019) 17:95

Management of diabetes in patients with NASH:

Questions:

How to diagnose NAFLD, which treatments and which targets for treatment?

Type 2 diabetes and NAFLD:

decreased insulin action/insulin resistance and unopposed glucagon action

Type 2 diabetes:

Survival is worsened with increasing number of features of Metabolic syndrome

Gudzer, Gatling, Mullee, Byrne Diabetologia 2006 Jan;49(1):49-55

NASH and decompensating cirrhosis: decreased hepatic gluconeogenesis

Rational Testing Tests for diagnosing and monitoring non-alcoholic fatty liver disease in adults Christopher D Byrne, Janisha Patel, Eleonora Scorletti, Giovanni Targher.

BMJ. 2018 Jul 12;362:k2734.

Investigate the severity of liver fibrosis

Although biopsy is the most accurate way of staging fibrosis, it is usually reserved for patients who are most likely to have substantial fibrosis or where there is diagnostic uncertainty. If available, the enhanced Liver Fibrosis test (ELF) is preferred by NICE guidelines in the UK. If it is not available, use another non invasive test as recommended by European and American guidelines.

BMJ. 2018 Jul 12;362:k2734. doi: 10.1136/bmj.k2734. Tests for diagnosing and monitoring non-alcoholic fatty liver disease in adults.

Scatter plots showing associations in NAFLD between liver stiffness and ELF scores (A) and liver stiffness and ELF scores in patients with diabetes (B)

Scatter plots showing associations in NAFLD between liver stiffness and FIB-4 scores (A)

Investigate severity of liver fibrosis

Although biopsy is the most accurate way of staging fibrosis, it is usually reserved for patients who are most likely to have substantial fibrosis or where there is diagnostic uncertainty. If available, the enhanced Liver Fibrosis test (ELF) is preferred by NICE guidelines in the UK. If it is not available, use another non invasive test as recommended by European and American guidelines.

Modified from BMJ. 2018 Jul 12;362:k2734. doi: 10.1136/bmj.k2734.

2019: ELF score pathway modified and Community Fibroscanning added

MANAGEMENT OF NAFLD ACCORDING TO NAFLD SEVERITY AND DIABETES STATUS

Postgrad Med J. 2019 May 13. pii: postgradmedj-2018-136316

Potential side effects of pioglitazone :Weight gain

(fluid retention/increase in gluteofemoral adipose). Small increase in risk of fracture

Forest plot and pooled estimates of the effect of NAFLD on risk of incident diabetes, stratified by length of follow up

			70	
Study		ES (95% CI)	Weight	
More than 5 years of FU				
Okamoto (2003)		1.83 (0.90, 3.50)	4.60	
Yamazaki (2015)	- * -	2.37 (1.60, 3.50)	6.16	
Shah (2015)	*	2.06 (1.50, 2.80)	7.77	
Fukuda (2016)		6.77 (5.20, 8.90)	2.95	
Chen (2016)	*	2.17 (1.60, 3.00)	7.49	
Ma (2017)		2.66 (1.20, 5.70)	2.20	
Chen (2017)		2.38 (1.60, 2.50)	8.82	
Subtotal ($f^2 = 74.6\%$, $P = 0.001$)	\diamond	2.60 (1.92, 3.29)	40.00	
Less than or equal to 5 years of FU				
Shibata (2007)		5.50 (3.60, 8.50)	1.92	
Kim (2008)	-	1.51 (1.04, 2.20)	8.15	
Bae (2011)		1.33 (1.10, 1.70)	9.48	
Sung (2012)	- 10 -	2.42 (1.70, 3.40)	6.68	
Kasturiratne (2013)	-	1.64 (1.20, 2.20)	8.57	
Choi (2013)	-	1.64 (1.30, 2.10)	9.06	Summary HR (95%Cls)
Ming (2015)	•	4.46 (1.90, 10.70)	0.69	
Li (2015)		3.37 (2.40, 4.30)	6.16	2 22 (4 04 2 60)
Liu (2017)	-	1.67 (1.40, 2.10)	9.28	= 2.22 (1.84, 2.60)
Subtotal ($l^2 = 74.5\%$, $P = 0.000$)	0	1.92 (1.52, 2.32)	60.00	
Overall ($l^2 = 79.2\%$, $P = 0.000$)	\$	2.22 (1.84, 2.60)	100.00	
NOTE: Weights are from random-effects analysis				Diabetes Care
	0123 6	10		
				2018: 41: 372-382

NAFLD increases risk of incident CVD events (fatal, non-fatal or both)

Meta-analysis of the risk of incident CVD events associated with NAFLD.

				Odds Ratio	Odds Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Fatal CVD events						
Adams 2010	0.095	0.516	3.6%	1.10 [0.40, 3.02]		
Ekstedt 2015	0.438	0.170	7.0%	1.55 [1.11, 2.16]		
Haring 2009 men	-0.248	0.160	7.1%	0.78 [0.57, 1.07]	-8-	
Haring 2009 women	-0.020	0.225	6.5%	0.98 [0.63, 1.52]		
Jepsen 2003	0.741	0.078	7.7%	2.10 [1.80, 2.45]	-	
Lazo 2011	-0.150	0.127	7.4%	0.86 [0.67, 1.10]		
Zhou 2012	1.184	0.394	4.7%	3.27 [1.51, 7.08]		
Subtotal (95% CI)			44.1%	1.31 [0.87, 1.97]	•	I Henstology
Heterogeneity: Tau² = 0.25; C	chi² = 61.73, df = 6 (P	< 0.000	01); I² = 90	%		J. Hepatology
Test for overall effect: Z = 1.2	8 (P = 0.20)					2016.65.500.600
						2010; 05: 589-600
Fatal and non-fatal CVD	events					
Emre 2015	0.896	0.422	4.4%	2.45 [1.07, 5.61]		
Pisto 2014	0.875	0.175	7.0%	2.40 [1.70, 3.39]		
Targher 2007	0.625	0.222	6.5%	1.87 [1.21, 2.89]		
Wong 2015	-0.105	0.135	7.3%	0.90 [0.69, 1.17]		
Zeb 2016	0.350	0.178	7.0%	1.42 [1.00, 2.02]		
Subtotal (95% CI)			32.2%	1.63 [1.06, 2.48]	-	
Heterogeneity: Tau² = 0.18; C	chi² = 23.41, df = 4 (P	= 0.000	1); I² = 83%			
Test for overall effect: Z = 2.2	4 (P = 0.02)					
Non-fatal CVD events						
El Azeem 2013	1.238	0.164	7.1%	3.45 [2.50, 4.76]		
Fracanzani 2016	0.688	0.34	5.2%	1.99 [1.01, 3.92]		Summary HR (95%Cls)
Hamaguchi 2007	1.415	0.48	3.9%	4.12 [1.58, 10.74]		
Moon 2015	1.442	0.710	2.4%	4.23 [1.05, 17.04]		—
Pickhardt 2014	0.104	0.358	5.1%	1.11 [0.55, 2.24]		
Subtotal (95% CI)			23.6%	2.52 [1.52, 4.18]		=1.64 (1.26, 2.13)
Heterogeneity: Tau² = 0.18; C	chi² = 10.22, df = 4 (P	= 0.04);	l² = 61%			
Test for overall effect: Z = 3.5	8 (P = 0.0003)					
Total (95% CI)			100.0%	1.64 [1.26, 2.13]	•	
Heterogeneity: Tau² = 0.23	3; Chi² = 118.34, df	= 16 (P	< 0.0000	i); i ² = 86%		
Test for overall effect: Z =	3.69 (P = 0.0002)			0.0	0 U.Z 1 5 ecreased risk Increased ri	2U sk
Test for subgroup differen	ces: Chi² = 3.94, df	= 2 (P =	= 0.14), l²	= 49.2%		Si

Cardiovascular disease, cancer and mortality among people with type 2 diabetes with NAFLD (or ALD) requiring hospital admission

	HR (95% CI)		
Outcome ICD coded diagnoses	ALD (n = 1,707)	NAFLD (n = 1,452)	CVD events HR (95%Cls)
Incident/recurrent CVD event*	1.59 (1.43, 1.76)	1.70 (1.52, 1.90)	
Incident/recurrent HCC ⁺	41.7 (30.0, 57.8)	19.3 (11.8, 31.4)	= 1.70 (1.52 <i>,</i> 1.90)
Incident/recurrent cancer, excluding HCC‡	1.28 (1.12, 1.47)	1.10 (0.94, 1.29)	
All-cause mortality§	4.85 (4.49, 5.23)	1.60 (1.40, 1.83)	
CVD mortality*	2.05 (1.63, 2.58)	1.15 (0.85, 1.57)	
HCC mortality ⁺	20.5 (13.9, 30.1)	6.16 (3.02, 12.6)	
Cancer mortality, excluding HCC [‡]	1.24 (0.98, 1.57)	0.76 (0.55, 1.04)	
Other causes of death	3.50 (3.00, 4.07)	1.60 (1.28, 1.99)	

National cohort = 134,368 people with T2DM - mean follow up of 4.3 years No liver disease = 21,873 CVD events NAFLD = 320 CVD events ALD = 378 CVD events

Diabetes Care 2018; 41: 1-7

Potential drug treatment for NASH: pioglitazone

No licensed treatment for NAFLD :

Potential benefits of combining pioglitazone and GLP-1 agonist?

At what level of CVD risk should patients with NAFLD be treated?

Type 2 diabetes and cirrhosis/fibrosis/sclerosis/portal hypertension with NAFLD: Markedly increased risk of adverse outcomes compared with T2DM alone

Reference group	Ha	Hazard ratios (95% CI)			
Type 2DM & No NAFLD	W	hole NAFLD	Fatty liver/NASH	Cirrhosis / fibrosis/	
	gr	oup ^a	sub-group ^{a,b}	Sclerosis/ PH sub-	
Outcome	(n	= 1998)	(n = 1283)	group ^{a,c} (n = 715)	
Incident or recurrent	t CVD 1.	62 (1.47, 1.77)	1.66 (1.47, 1.87)	1.57 (1.36, 1.80)	
event after diagnosi	s of				
diabetes					
All-cause mortality	2.	11 (1.92, 2.32)	1.29 (1.10, 1.51)	3.20 (2.84, 3.60)	
CVD mortality	1.	39 (1.10, 1.74)	1.10 (0.78, 1.54)	1.78 (1.31, 2.42)	
HCC mortality	41	1.89 (27.1, 64.8)	2.42 (0.33, 17.5)	90.81 (58.0, 142.1)	
Cancer mortality	1.	15 (0.92, 1.42)	0.81 (0.58, 1.13)	1.60 (1.21, 2.10)	
(excluding HCC)					
Other causes of dea	ath 3.	16 (2.77, 3.59)	1.89 (1.52, 2.35)	4.82 (4.11, 5.64)	

Diabetic

Medicine,

2019; 36 (Suppl. 1),

5–33 A36

134,368 people with type 2 diabetes with one or more hospital admission records and no record of other chronic liver diseases aged 40-89 years in Scotland from 2004-2013.

Assessment of liver disease severity and liver dysfunction in patients with diabetes. The Child-Pugh classification to assess liver disease function.

		1 point	2 points	3 points
HbA1c = 9.6%	Child-Pugh score	oarameters		
(DCCT)	Serum bilirubin	<34 (<2)	34-50 (2-3)	>50 (>3)
(IFCC)	micromoles/L			
= noor glycaemic	(mg/dl)			
control	Serum albumin	>35	28-35	<28
	(mg/dl)			
eGFR = 51	International	<1.70	1.71-2.20	>2.20
mls/min	Normalized Ratio			
Child-Pugh B	Ascites	None	None with	Persistent
8 points			medication	
Enterococcus &	Hepatic	None	Grade I-II (or none	Grade III-IV (or
Hepatic	encephalopathy		with treatment)	persistent)
cheephalopathy	Child-Pugh sco	ore A = 5-6 points; B	= 7-9 points; C = ≥1	0 points

Potential treatments for diabetes in patients with cirrhosis.

HbA1c = 9.6%	
(DCCT)	
Or 81 mmol/mol	
(IFCC)	

= poor glycaemic control

eGFR = 51 mls/min

Child-Pugh B 8 points

Enterococcus & Hepatic encephalopathy

Treatments*	Usefulness for	Side effects
	diabetes and cirrhosis	
Lifestyle	Maybe useful	May worsen malnutrition common
Metformin	Useful	Caution with eGFR <45 ml/min. Avoid with
		eGFR <30 ml/min
PPAR-gamma	Maybe useful but	Avoid with Child-Pugh A, B, or C
agonists	caution with liver failure	
Secretagogues	Avoid	Major risk of hypoglycaemia with worsening
Sulphonylureas		liver function
Incretin modifiers	Useful	Nausea
Glucosidase	Maybe useful with	Diarrhoea/flatulence
inhibitors	encephalopathy	
Insulin	Useful	Hypoglycaemia with worsening liver function

*All treatments can be used in patients with type 2 diabetes. Only insulin should be used in patients with type 1 diabetes and possibly metformin if the patient is obese. eGFR, estimated glomerular filtration rate.

Statin usage in severe chronic liver disease

HbA1c = 9.6% (DCCT) Or 81 mmol/mol (IFCC)

= poor glycaemic control

eGFR = 51 mls/min

Child-Pugh B 8 points

Enterococcus & Hepatic encephalopathy

- Benefits of statin treatment in most patients outweigh their potential hepatotoxic risk. Especially in patients with severe chronic liver injury and high risk of CVD
- Statin treatment <u>may</u> help to prevent the progression of liver fibrosis to cirrhosis and HCC.
- Therefore, the reasons for statin use in chronic liver diseases are more convincing than the reasons against
- Statins definitely safe in Child Pugh A
- Statins metabolised by microsomal cytochrome P450s
- Atorva- and simvastatin metabolised by P450 3A4 (drug interactions)
- But Pravastatin NOT metabolised in liver (probably safest statin)
- Pravastatin 40mg/day = Simvastatin 20 mg/day (approx.)
- <u>N.B Statin usage too risky in decompensated cirrhosis</u>

Conclusions (i)

- Diagnose the severity of NAFLD
- Advocate weight loss and Mediterranean-style diet
 - Lifestyle advice targetting no smoking, increase physical activity if possible.
 - Good glycaemic control
- Consider pioglitazone
- Consider liraglutide

Conclusions (ii)

- Red flags for CVD= MetS features and type 2 diabetes
- CVD risk increased ~64-250% (regardless of diabetes status)
- Assess CVD risk in NAFLD using risk calculators but beware of underestimation of CVD risk – CAC estimation may be useful
- Treat early and aggressively to decrease CVD risk
 - E.g. statins to decrease CVD risk (atorvastatin 10 mg o.d)
 - Treat BP (e.g. >140/80 mmHg, Ramipril, then bendroflumethiazide, then calcium antagonist, consider low dose aspirin)

Conclusions (iii)

- Patients with cirrhosis and type 2 diabetes (T2DM) are at increased risk of cardiovascular disease and non-liver cancer mortality, compared to subjects with T2DM who did not have liver disease.
- Patients with diabetes are at an increased risk of a range of different bacterial infections and patients with poor glycaemic control are particularly at risk of bacterial peritonitis and the development of septicaemia
- Bacteraemia or septicaemia increases insulin resistance and causes hyperglycaemia
- Recovery from infection improves insulin sensitivity necessitating a review of glucose lowering mediations and dosages
- When considering which drug to choose to manage hyperglycaemia in patients with diabetes and cirrhosis it is important to formally assess the level of liver dysfunction (and use of the Child-Pugh criteria are useful).
- Use of insulin is often the easiest and safest treatment for managing fluctuating glucose concentrations in patients with diabetes and cirrhosis requiring hospitalisation

MetS and type 2 diabetes are important CVD risk factors

Diagnosing liver fat

Technique for diagnosing liver fat	Result compatible with NAFLD	Pros and cons of technique
Ultrasonography	Liver echogenicity exceeds that of renal cortex and spleen and there is attenuation of the ultrasound wave, loss of definition of the diaphragm, and poor delineation of the intrahepatic architecture	The sensitivity of ultrasound is poor below levels of fat infiltration <20%-25%, however, the technique is highly sensitive and specific at higher levels of fat infiltration. Combining standard ultrasound with computer software technology (MATLAB) (eg, combined ultrasound hepatic/renal ratio and hepatic echo- intensity attenuation rate evaluation ⁾ , improves the sensitivity of ultrasound even further
Fatty liver index (FLI) (Algorithm derived score using body mass index, waist circumference, fasting serum triglycerides, and gamma-glutamyltransferase concentrations)	FLI ≥60 suggestive of hepatic steatosis and validated against ultrasound, or magnetic resonance spectroscopy (MRS)	Inexpensive, but requires waist circumference measurements. Not validated against liver histology
NAFLD liver fat score (Algorithm derived score using the presence of metabolic syndrome and type 2 diabetes, fasting serum insulin, AST, and the AST/alanine aminotransferase ratio)	Optimal cut-off point = -0.640 for diagnosing hepatic steatosis on MRS	Inexpensive, but requires serum insulin and AST measurements. Not validated against liver histology

Combining standard ultrasonography with computer software technology (MATLAB), eg combined ultrasound hepatic/renal ratio and hepatic echointensity attenuation rate evaluation, improves the sensitivity of ultrasonography. and compared with proton-magnetic resonance spectroscopy (ie, the gold standard for detecting low levels of liver fat content), at levels of <15% liver fat content, the sensitivity and specificity of the aforementioned ultrasound quantitative model was 81.4% and 100%.

Diagnosing liver fat – imaging

Technique	Result compatible with NAFLD	Pros and cons of technique
Transient elastography (FibroScan)	Optimal controlled attenuation parameter (CAP) thresholds >248, >268 dB/m for	Transient elastography is a promising technique, but further evidence and
	those above stage 1 steatosis grade, respectively ²⁷	validation of its utility for diagnosing hepatic steatosis (by CAP
		measurement) is required. The signal
		can be affected in severely obese patients
Computed tomography	Attenuation of the liver is at least 10 Hounsfield Units (HU) less than that of the spleen, or attenuation of the liver less	Good for investigating other potential abdominal pathologies. Computed tomography has limited sensitivity to
	than 40 HU ²⁸	detect low levels (<30% liver fat) and exposes the patient to substantial levels of radiation
Magnetic resonance imaging (MRI) or	MRI: Chemical shift gradient-echo	MRI and MRS are very sensitive non-
MRS	imaging with in-phase and opposed-phase	invasive techniques for diagnosing liver
	acquisitions identifying $\geq 5.5\%$ liver fat	fat, but are currently expensive
	accumulation	techniques for this indication
	MRS: Proton MR spectroscopy	
	$1 \text{dentifying} \ge 3.5\%$ liver fat	
	accumulation ²⁹	

Invasive and non-invasive techniques for diagnosing advanced fibrosis in NAFLD

Technique	Result compatible with NAFLD
Biopsy	Advanced fibrosis thresholds=F3 or F4 stages
	Fibrosis may vary from no fibrosis (F0), portal fibrosis without
	septa (F1), portal fibrosis with few septa (F2), bridging fibrosis
	between portal and central veins (F3), and cirrhosis (F4)
Liver fibrosis tests	Advanced fibrosis thresholds
(biochemical variables+/-anthropometry)	Fibrosis-4 score (FIB4) >2.67 ²⁶
	NAFLD fibrosis score (NFS) >0.676 ²⁷
	ELF blood test score $\geq 10.51^{28}$
Transient elastography eg, FibroScan with M or XL probes	Advanced fibrosis threshold
(measurement of liver stiffness)	Vibration controlled transient elastography >8.7 kPA ^{29 30}
Acoustic radiation force impulse elastography (ARFI)	Advanced fibrosis threshold
	ARFI >1.4 m/s ³¹
Magnetic resonance imaging techniques eg, magnetic resonance	Advanced fibrosis threshold
elastography (MRE)	MRE >3.64 ³²
1 The FIB4 score is calculated as $(age \times AST)$; (platelet count $\times \sqrt{ALT}$)	

2. The NFS is calculated as follows: $-1.675+0.037 \times age+0.094 \times BMI+1.13 \times IFG$ or diabetes (yes=1, no=0)+0.99 \times AST/ALT ratio-0.013 \times platelet count-0.66 \times serum albumin

3. The ELF score is a commercial blood test that combines quantitative measurements of three serum direct fibrosis biomarkers (ie, tissue inhibitor of metalloproteinase 1, procollagen III N-terminal peptide, and hyaluronic acid) to a single value. In a recent meta-analysis, the summary sensitivities and specificities of ELF score for detecting significant fibrosis were 83% and 73%, respectively; those for detecting advanced fibrosis were 78% and 76%, whereas those for detecting cirrhosis were 80% and 71%, respectively.³³

4. In a recent meta-analysis, the summary sensitivities and specificities of FibroScan with the M probe (threshold of 8.7-9.0 kPA) for detecting advanced fibrosis were 87% and 79%, respectively.³⁰ A Fibroscan with the XL probe has also been validated for severely obese patients, and has a diagnostic accuracy substantially comparable with that of the standard M probe

5. Magnetic resonance elastography has the highest diagnostic accuracy for staging fibrosis in NAFLD.

Diagnosing NASH with Magnetic resonance imaging -Multiparametric MRI to assess fat, inflammation and fibrosis

Comments

Severe disease, likely florid steatohepatitis, or autoimmune hepatitis

Banerjee R J Hepatology 2014

Statistics Summary

Fat: 10.9 %
Iron: 1.2 mg/g liver
cT1: 1092.4 ms

Normal range: $<5.6\%^{-1}$ Normal range: <1.8mg/g² Normal range: $645ms - 822ms^3$

LIF 3.4

Courtesy of Dr R Banerjee

NAFLD and multimorbidity: treatment needs to consider multimorbidity

Treatment **—** NAFLD and multimorbidity

Type 2 diabetes, CVD and cardiac disease and cirrhosis

Does progression of NAFLD further increase risk of CVD?

Random-effects meta-analysis of the risk of fatal and non-

fatal CVD events associated with more severe NAFLD

More severe NAFLD defined either by presence of fatty liver on imaging *plus* either elevated serum gammaglutamyltransferase concentrations or high NAFLD fibrosis score or high FDG uptake on positron emission tomography, or by increasing fibrosis stage on liver biopsy).

Type 2 diabetes and NAFLD: a vicious cycle for cardiovascular and cardiac disease

• Does NAFLD increase risk of CVD in people with T2DM?

J Nutr Sci. 2017 May 8;6:e15.

NAFLD, type 2 diabetes and CVD

In patients with established type 2 diabetes

Question:

-Does NAFLD increase risk of CVD?

